Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DX(exp(ALPHA, BETA)) → DX(ALPHA)
DX(ln(ALPHA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(ALPHA)
DX(neg(ALPHA)) → DX(ALPHA)
DX(times(ALPHA, BETA)) → DX(BETA)
DX(div(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(BETA)
DX(times(ALPHA, BETA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(ALPHA)
DX(plus(ALPHA, BETA)) → DX(BETA)
DX(plus(ALPHA, BETA)) → DX(ALPHA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DX(exp(ALPHA, BETA)) → DX(ALPHA)
DX(ln(ALPHA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(ALPHA)
DX(neg(ALPHA)) → DX(ALPHA)
DX(times(ALPHA, BETA)) → DX(BETA)
DX(div(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(BETA)
DX(times(ALPHA, BETA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(ALPHA)
DX(plus(ALPHA, BETA)) → DX(BETA)
DX(plus(ALPHA, BETA)) → DX(ALPHA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DX(exp(ALPHA, BETA)) → DX(ALPHA)
DX(exp(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(ALPHA)
DX(times(ALPHA, BETA)) → DX(BETA)
DX(div(ALPHA, BETA)) → DX(BETA)
DX(minus(ALPHA, BETA)) → DX(BETA)
DX(times(ALPHA, BETA)) → DX(ALPHA)
DX(div(ALPHA, BETA)) → DX(ALPHA)
DX(plus(ALPHA, BETA)) → DX(BETA)
DX(plus(ALPHA, BETA)) → DX(ALPHA)
The remaining pairs can at least be oriented weakly.

DX(ln(ALPHA)) → DX(ALPHA)
DX(neg(ALPHA)) → DX(ALPHA)
Used ordering: Combined order from the following AFS and order.
DX(x1)  =  DX(x1)
exp(x1, x2)  =  exp(x1, x2)
ln(x1)  =  x1
minus(x1, x2)  =  minus(x1, x2)
neg(x1)  =  x1
times(x1, x2)  =  times(x1, x2)
div(x1, x2)  =  div(x1, x2)
plus(x1, x2)  =  plus(x1, x2)

Recursive Path Order [2].
Precedence:
exp2 > DX1
minus2 > DX1
times2 > DX1
div2 > DX1
plus2 > DX1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DX(ln(ALPHA)) → DX(ALPHA)
DX(neg(ALPHA)) → DX(ALPHA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DX(ln(ALPHA)) → DX(ALPHA)
The remaining pairs can at least be oriented weakly.

DX(neg(ALPHA)) → DX(ALPHA)
Used ordering: Combined order from the following AFS and order.
DX(x1)  =  DX(x1)
ln(x1)  =  ln(x1)
neg(x1)  =  x1

Recursive Path Order [2].
Precedence:
ln1 > DX1

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DX(neg(ALPHA)) → DX(ALPHA)

The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


DX(neg(ALPHA)) → DX(ALPHA)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
DX(x1)  =  x1
neg(x1)  =  neg(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

dx(X) → one
dx(a) → zero
dx(plus(ALPHA, BETA)) → plus(dx(ALPHA), dx(BETA))
dx(times(ALPHA, BETA)) → plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA)))
dx(minus(ALPHA, BETA)) → minus(dx(ALPHA), dx(BETA))
dx(neg(ALPHA)) → neg(dx(ALPHA))
dx(div(ALPHA, BETA)) → minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two))))
dx(ln(ALPHA)) → div(dx(ALPHA), ALPHA)
dx(exp(ALPHA, BETA)) → plus(times(BETA, times(exp(ALPHA, minus(BETA, one)), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.